Sensor Comparison Chart

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Manufacturer</th>
<th>Power</th>
<th>Corner Frequency</th>
<th>Damping</th>
<th>Sensitivity</th>
<th>Poles and Zeroes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS-2</td>
<td>Streckeisen</td>
<td>30 ma @ 12vdc</td>
<td>0.0083 Hz</td>
<td>0.707 critical</td>
<td>1500 v/m/s</td>
<td>Depends on generation: Generic, Gen.1, Gen.2, Gen.3</td>
</tr>
<tr>
<td>CMG-3T</td>
<td>Guralp</td>
<td>70 ma @ 12vdc</td>
<td>0.0083 Hz</td>
<td>0.707 critical</td>
<td>1500 v/m/s</td>
<td>5 poles, 2 zeros</td>
</tr>
<tr>
<td>CMG3-ESP</td>
<td>Guralp</td>
<td>70 ma @ 12vdc</td>
<td>0.033 Hz</td>
<td>0.707 critical</td>
<td>2000 v/m/s</td>
<td>5 poles, 2 zeros</td>
</tr>
<tr>
<td>CMG-40T</td>
<td>Guralp</td>
<td>50 ma @ 12vdc</td>
<td>0.033 Hz</td>
<td>0.707 critical</td>
<td>800 v/m/s</td>
<td>5 poles, 2 zeros</td>
</tr>
<tr>
<td>CMG-40-1</td>
<td>Guralp</td>
<td>50 ma @ 12vdc</td>
<td>1.0 Hz</td>
<td>0.707 critical</td>
<td>2000 v/m/s</td>
<td>6 poles, 2 zeros</td>
</tr>
<tr>
<td>Trillium 240</td>
<td>Nanometrics</td>
<td>54 ma @ 12vdc</td>
<td>0.0042 Hz</td>
<td>0.707 critical</td>
<td>1200 v/m/s</td>
<td>Gen 1 (s/n 0-399): 7 poles 5 zeros Gen 2 (s/n 400+): 7 poles 5 zeros</td>
</tr>
<tr>
<td>Trillium 120PA</td>
<td>Nanometrics</td>
<td>54 ma @ 12vdc</td>
<td>0.008 Hz</td>
<td>0.707 critical</td>
<td>1200 v/m/s</td>
<td>7 poles, 5 zeros</td>
</tr>
<tr>
<td>Trillium 40</td>
<td>Nanometrics</td>
<td>46 ma @ 12vdc</td>
<td>0.025 Hz</td>
<td>0.707 critical</td>
<td>1500 v/m/s</td>
<td>7 poles, 5 zeros</td>
</tr>
<tr>
<td>Compact Trillium</td>
<td>Nanometrics</td>
<td>14 ma @ 12vdc</td>
<td>0.008 Hz</td>
<td>0.707 critical</td>
<td>749.1 v/m/s</td>
<td>7 poles, 3 zeros</td>
</tr>
<tr>
<td>L-22-3D</td>
<td>Mark Products</td>
<td>passive</td>
<td>2.0 Hz</td>
<td>0.707 critical</td>
<td>88 v/m/s</td>
<td>2 poles, 2 zeros</td>
</tr>
<tr>
<td>L-28-3D</td>
<td>Mark Products</td>
<td>passive</td>
<td>4.5 Hz</td>
<td>0.707 critical</td>
<td>30.4 v/m/s</td>
<td>2 poles, 2 zeros</td>
</tr>
<tr>
<td>Y-28-3D</td>
<td>Oyo-Geospace</td>
<td>passive</td>
<td>4.5 Hz</td>
<td>0.707 critical</td>
<td>32 v/m/s</td>
<td>2 poles, 2 zeros</td>
</tr>
<tr>
<td>GS11</td>
<td>Oyo-Geospace</td>
<td>passive</td>
<td>4.5 Hz</td>
<td>0.707 critical</td>
<td>100 v/m/s</td>
<td>2 poles, 2 zeros</td>
</tr>
<tr>
<td>L-40</td>
<td>Mark Products</td>
<td>passive</td>
<td>40 Hz</td>
<td>0.707 critical</td>
<td>22.34 v/m/s</td>
<td>2 poles, 2 zeros</td>
</tr>
<tr>
<td>L-4C</td>
<td>Mark Products</td>
<td>passive</td>
<td>1.0 Hz</td>
<td>0.707 critical</td>
<td>166.54 v/m/s</td>
<td>2 poles, 2 zeros</td>
</tr>
<tr>
<td>S-13</td>
<td>Teledyne Geotech</td>
<td>passive</td>
<td>1.0 Hz</td>
<td>0.707 critical</td>
<td>629 v/m/s</td>
<td>2 poles, 2 zeros</td>
</tr>
</tbody>
</table>
Plot of selected Sensor Amplitudes $f(FQ)$

Other Documents:
- Document describing STS-2 generations
- Determine STS-2 generation from serial number

Related categories: Sensors

Source URL: https://www.passcal.nmt.edu/content/instrumentation/sensors/sensor-comparison-chart