
	
For	a	much	more	detailed	processing	guide,	please	see	the	PASSCAL	document:	
“Generating	SEED	From	RT130	Data”,	available	from	our	web	page:	
http://www.passcal.nmt.edu/content/data-archiving	

	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
Last	revised:	June	11,	2015	

	
RT130	Data	Processing	In	a	Nutshell	

	
You’ve	offloaded	a	service	run	and	have	stacks	of	zip	files.	Now	what	to	do	with	them?		Start	by	
getting	organized	(Steps	1-3).	Then	convert	the	data	&	log	files	to	miniseed	(4-7).	Build	the	
database	(8-12)	and	the	dataless	(13-14).	Finally,	send	the	day	volumes	and	the	dataless	to	
PASSCAL	(15).	Unix	commands	(bold	print)	and	any	command	line	arguments	are	highlighted	in	
yellow.	Input	files	are	denoted	by	<filename>.	
	
1.		Create	and	maintain	an	organized	directory	structure	for	your	data.	Start	by	creating	a	main	
directory	for	the	project.	Once	the	main	project	directory	is	made,	create	subdirectories	within	it	
for	your	raw	data	(RAW),	log	files	(LOGS),	and	database	(DB).	For	example:		mkdir	RAW	(move	
your	raw	files	here),	mkdir	LOGS	(for	your	log	files),	mkdir	DB	(for	the	database	files	along	with	
batch	and	par	files).	
	
2.		In	the	DB	directory,	use	a	text	editor	to	create	a	batch	file	describing	every	station	in	your	
network.	See	the	template	on	page	4	to	get	started.		Be	very	accurate	with	your	entries	–	small	
typos	now	can	cause	big	headaches	later.		
	
3.		Next	you	will	need	to	create	a	parameter	file	in	the	DB	directory	that	our	tool,	rt2ms,	can	parse.	
You	can	either	use	batch2par:	
batch2par	<batchfile>	–m	>	<parfile>			
(-m	assures	that	the	mass	positions	are	
correctly	formatted).	Or	use	a	text	editor	
and	the	format	below	to	create	one	from	
information	in	the	batch	file.		
This	example	describes	three	data	
streams	for	DAS	9306	at	station	ME42.	
The	data	are	40sps	(refstrm	1),	1	sps	
(refstrm	2),	and	0.1sps	(refstrm	9,	the	mass	positions).	Please	note	that	if	you	use	batch2par	the	
‘refstrm’	column	might	need	to	be	hand-edited	because	the	initial	output	will	not	be	understood	by	
rt2ms.	You	will	also	need	to	edit	the	default	‘gain’	column	by	changing	the	placeholder	value	of	X1	
to	your	instrument	gain	(usually	1	or	32).	

	

#das; refchan; refstrm; netcode; station; channel; samplerate; gain
9306; 1; 1; PI; ME42; BHZ; 40; 1
9306; 3; 1; PI; ME42; BHE; 40; 1
9306; 2; 1; PI; ME42; BHN; 40; 1
9306; 1; 2; PI; ME42; LHZ; 1; 1
9306; 3; 2; PI; ME42; LHE; 1; 1
9306; 2; 2; PI; ME42; LHN; 1; 1
9306; 1; 9; PI; ME42; VM1; 0.1; 1
9306; 2; 9; PI; ME42; VM2; 0.1; 1
9306; 3; 9; PI; ME42; VM3; 0.1; 1
	

#comment:	This	is	a	batch	file	example.	
	
net	PI	Pier	database	at	PASSCAL	
	
sta	ME42	34.0745	-106.9247	1.430	Socorro,	NM,	USA	
time	02/06/2011	00:00:00	
datalogger		rt130_mp		0984	
sensor	cmg3t	0	T4476	
axis	Z	0	0	-	1	1	
axis	N	0	90	-	2	1	
axis	E	90	90	-	3	1	
samplerate	40sps		
channel	Z	BHZ		
channel	N	BHN		
channel	E	BHE		
samplerate	1sps	
channel	Z	LHZ		
channel	N	LHN		
channel	E	LHE		
add	
	
close	ME42	12/31/2013	23:59:59	
	
sta	ME101	-77.72591	162.26907	0.079	Elsewhere,	Antarctica		
time	02/29/2011	00:00:00	
datalogger		rt130_nmp		0988		
sensor	l22	0	G071	
axis	Z	0	180	-	1	32	
axis	N	0	90	-	2	32	
axis	E	90	90	-	3	32	
samplerate	100sps		
channel	Z	EHZ		
channel	N	EHN		
channel	E	EHE	
samplerate	1sps	
channel	Z	LHZ		
channel	N	LHN		
channel	E	LHE		
add	
	
close	ME101	12/31/2013	23:59:59	
	
	
	
	

4.	In	the	main	project	directory,	convert	the	raw	RT130	data	to	miniseed.	Typing	rt2ms	–h	shows	
a	list	of	available	options.	The	command	shown	below	is	the	most	general	usage:	
rt2ms		-D	RAW		–Y	–L	–o	MSEED	-p		DB/<parfile>	>&	rt2ms.out			
The	(-D)	flag	will	process	all	.ZIP	files	in	a	specified	directory,	(-Y)	puts	the	data	in	yearly	
directories,	(-L)	outputs.	log	and,	if	created,	.err	files,	(-o)	creates	an	output	directory,	MSEED,	and		
(-p)	points	to	your	parfile.	Note:	The	data	conversion	may	take	many	hours	for	large	data	sets.	
When	rt2ms	finishes,	move	all	of	your	.log	and	.err	files	to	your	LOGS	directory.	
	
5.		Verify	the	data	quality	by	reviewing	the	traces	in	the	MSEED	directory	(with	pql)	and	log	files	in	
the	LOGS	directory	(with	logpeek).	Obvious	signs	of	trouble	include	loss	of	GPS	timing,	overlaps,	
gaps,	corrupted	files,	etc.		Make	a	note	of	any	problems.		Use	fixhdr	to	confirm	the	conversion	is	
complete	and	to	correct	any	problem	headers,	mark	timing	issues,	and/or	to	convert	the	files	to	big	
endianess	if	they	aren’t	already.	For	more	information	on	how	to	use	these	tools,	refer	to	the	
Appendices	at:	http://www.passcal.nmt.edu/content/data-archiving/documentation/passive-
source	http://www.passcal.nmt.edu/content/pql-II-program-viewing-data	
	

6.			Copy	the	local	log2miniseed	parameter	file	into	your	main	project	directory	by	typing:			
cp	$ANTELOPE/data/pf/log2miniseed.pf	.					
Change	the	default	string	in	the	log2minseed.pf	file	
from	this:	 	 wfname	%Y/%j/%{sta}.%{chan}.%Y:%j				
to	this:			 	 wfname	day_volumes/%{sta}/%{sta}.%{net}.%{loc}.%{chan}.%Y.%j	
This	long	string	specifies	an	organized	directory	and	filename	structure,	as	required	by	PASSCAL.	
	
7.		In	the	main	project	directory,	convert	the	log	files	to	miniseed	format	and	put	them	into	a	
day_volumes	directory.	Use	one	of	the	commands	below	to	ensure	that	the	log2miniseed	command	
is	calling	the	parameter	file	you	just	revised	in	your		project	directory:		
For	tsch,	type:	setenv	PFPATH	$ANTELOPE/data/pf:.			
For	bash,	type:		export	PFPATH=$ANTELOPE/data/pf:.		
Then:	log2miniseed	–a	–n	<netcode>	–s	<station>	LOGS/<logsForThisStation>		
The	(-a)	flag	appends	to	existing	file,	(-n)	adds	your	network	code	to	the	file	name,	and	(-s)	adds	
the	station	to	the	file	name.	Do	this	for	every	station/log	file	combination	or	write	a	script	to	run	
through	all	the	combinations.		Note	that	your	new	.pf	file	creates	a	day_volumes	directory	in	your	
project	directory	and	a	station	subdirectory	and	running	log2miniseed	places	all	of	your	renamed	
and	reformatted	log	files	there.		
	
8.		In	the	DB	directory,	build	the	Antelope	database	using	the	batch	file	you	built	in	Step	2:		
dbbuild		-b		<dbname>		<batchfile>		>&	dbbuild.out	
	
9.		View	your	database	in	the	DB	directory:	dbe		<dbname>.	You	might	want	to	take	a	quick	look	at	
the	site	table	for	location	inaccuracies	and	the	site	chan	table	to	check	that	all	of	your	channels	and	

on/off	dates	are	correct.	If	you	find	errors	or	inaccuracies,	correct	the	batch	file	and	repeat	Steps	8	
&	9.		At	this	point	you	have	a	descriptive	framework	(metadata	only)	-	the	next	step	is	to	attach	the	
waveforms.	

	
10.		When	you’re	reasonably	certain	the	database	is	error-free	you	can	run	miniseed2days	in	the	
project	directory	to	create	station/channel/day	volumes	and	link	the	waveforms:	
miniseed2days	-d	DB/<dbname>	-u	-w	
"day_volumes/%{sta}/%{sta}.%{net}.%{loc}.%{chan}.%Y.%j"	MSEED/	>&	msd2days.out	
This	strategy,	similar	to	what	you	did	for	the	log2miniseed.pf	file,	specifies	an	organized	directory	
path	and	the	required	filename	structure.		The	(–u)	flag’s	mapping	of	files	can	cause	file	limit	
problems.	Use	unlimit	descriptors	(UNIX)	or	launchctl	limit	maxfiles	10000	(Mac)	to	increase	
these	limits.	Use	man	miniseed2days	for	more	information	on	parameters.	
	
11.		Correlate	the	channel	ids	between	tables	by	running:		dbfixchanids	<dbname>	in	the	DB	
directory.	
	
12.		Verify	the	correlation	of	your	data	and	database:	dbversdwf	–tu	<dbname>		>&	dbversdwf.out			
This	checks	that	the	times	in	the	wfdisc	agree	with	the	mseed	times.		
Also	run:		dbverify	–tj	<dbname>		>&	dbverify.out			This	checks	only	for	the	consistency	of	2-table	
joins	on	all	possible	combinations	of	database	tables.	Check	the	resulting	dbverify.out	file	for	
errors.		If	necessary,	fix	the	batch	file	and	repeat	Step	8.		
	
13.		Create	the	dataless	SEED	volume	(a.k.a	the	dataless)	in	the	DB	directory	with	the	following	
naming	convention:	mk_dataless_seed	–o	NN.YY.dbname.YYYYDOYHHMM.dataless		<dbname>		
Where:	NN	is	your	network	code,	YY	is	the	year	of	your	data,	and	DOYHHMM	is	the	approximate	
current	day-of-year-hour-minute.	The	dataless	is	a	type	of	index	of	the	metadata	that	allows	you	
and	future	users	to	see	what	data	are	available.	If	any	station	or	time	range	is	missing	from	the	
dataless,	the	corresponding	data	are	orphaned	and	totally	inaccessible	by	anyone.			
	
14.		Verify	the	dataless.	Run	seed2db	–v	NN.YY.dbname.YYYYDOYHHMM.dataless	>&	seed2db.out	
	
15.		Last	step:		Please	drop	a	note	to	data_group@passcal.nmt.edu	before	sending	the	data	to	
PASSCAL	so	that	we	can	set	up	a	receiving	area.		Attach	your	latest	dataless	to	this	email	unless	it	is	
larger	than	5Mb.	You	can	use	our	tool	data2passcal	to	automatically	send	the	waveform	data.		

A	few	tips…		
Many	database	errors	can	be	avoided	by	rounding	the	start	&	close	times	in	the	batch	to	
00:00:00	and	23:59:59,	respectively.		It’s	better	to	start	early	and	close	late	(even	by	a	day	
or	two)	so	that	all	data	&	log	files	are	described	in	the	dataless.	To	avoid	tears	when	you	
move	a	DAS	to	a	new	station,	be	sure	that	the	close	date	on	the	first	station	is	before	the	
open	date	on	the	new	station.	Station	changes,	such	as	a	new	datalogger,	sensor	or	sample	
rate,	must	be	documented	in	the	batch	file	as	shown	in	the	document	found	here:		
http://www.passcal.nmt.edu/webfm_send/2129	

