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What is an Instrument 
Response? 

A response describes how an instrument 
changes an input signal to produce an 
output signal. 

 



When are Instrument 
Responses Important? 

TimeSeries1(t) = Source(t) * Earth(t) * Instrument1(t) 
TimeSeries2(t) = Source(t) * Earth(t) * Instrument2(t) 

Source Instrument 

Earth 



When are Instrument 
Responses Important? 

When you’re: 

�  Studying wave sources 

�  Studying earth structure or propagation effects 

�  Studying ground motion (size and units matter) 

�  Comparing or using records from diverse instrumentation 

�  Archiving data for others’ use 

TimeSeries1(t) = Source(t) * Earth(t) * Instrument1(t) 
TimeSeries2(t) = Source(t) * Earth(t) * Instrument2(t) 



When are Instrument 
Responses Not Important? 

Sometimes when you’re: 

�  Imaging 

�  Picking 

�  Using homogeneous instrumentation 

�  Unconcerned about size and units 

TimeSeries1(t) = Source(t) * Earth(t) * Instrument1(t) 
TimeSeries2(t) = Source(t) * Earth(t) * Instrument2(t) 



Anatomy of  an  
Instrument Response 

�  The sequence is the “response cascade” 

�  Each step within the cascade is a “stage” 

�  Cascade each stage in the order in which it was applied 
during recording 

Stage 1 
Sensor 

Stage 2 
Amplifier 

Stage 3 
Analog  
Filter 

Stage 4 
ADC 
Datalogger 

Stages 5-? 
Digital 
Filters 



What We’ll Do 
�  Sensors & Amplifiers 

�  Where do amplitude and phase response (Bode) plots 
come from? 

�  Where do poles and zeros come from? 

�  How are amplitude & phase responses related to poles & 
zeros? 

�  SEED sensor and amplifier responses 

�  Other useful things to know about sensor and amplifier 
responses 



What We’ll Do 
�  Dataloggers and Filters 

�  How dataloggers work 

�  Analog to Digital Conversion  

�  Oversampling, decimation and other filtering 

�  Where do FIR coefficients come from? 

�  How are amplitude and phase responses related to FIR 
coefficients? 

�  SEED datalogger and filter responses 

�  Other useful things to know about datalogger and filter 
responses 



What We’ll Do 

�  Response Tools and Notes 

�  Nominal Response Library 

�  Retrieving responses from the DMC 

�  Writing responses (dataless SEED) 

�  Removing instrument responses 

�  Verifying responses 



Sensors 

�  have continuous inputs and outputs (they’re analog!) 

�  They usually change the units of  the property being measured 
into Volts. 

�  Solving the sensor’s equation for its output at all frequencies 
gives us its frequency response function (a polynomial) that 
describes the sensor’s frequency-dependent amplitude and 
phase changes.  

�  The frequency response function is a special case of  the more 
descriptive transfer function – a polynomial that can be defined 
by its roots (poles and zeros) if  factored, or from its coefficients 
if  expanded form.  



Sensor Example:  
Passive Seismometer 

From Scherbaum (1996) 

Equation of  Motion 
 
x'' +2hω0x'(t) + ω0

2x(t) = -u''(t) 
 

where 
 
x(t) = relative mass displacement 
u''(t) = ground acceleration (input signal) 
ω0= angular natural frequency 
h = damping factor (0<=h<=1) 



Sensor Example:  
Passive Seismometer 

�  From differential equations, we know to try a solution 
that describes harmonic oscillation where 

�  and for constant ω  

�  Real{x(t)} is a cosine wave with amplitude Ao 

�  Imaginary{x(t)} is a sine wave with amplitude Ao 

x(t) = Aoejωt 

x'(t) = jωAoejωt 

x''(t) = -ω2Aoejωt 
u''(t) = -ω2Aiejωt 

ω is a constant angular frequency, for now 



Linear Time-Invariant 
Systems 

�  But we’d like to solve for all frequencies.  Fortunately, 
seismometers are linear time-invariant systems (LTI), meaning that 
for a function φ that converts input signal u(t) to output signal x(t) 

�  superposition is valid 

 

�  and the order in which we scale doesn’t matter 

�  regardless of  when we perform these operations 

x(t) = φ[u(t)] 

Φ[u1(t) + u2(t)] = φ[u1(t)] + φ[u2(t)] 

φ[Α1u(t)] = A1φ[u(t)] 



Frequency Response 
Function 

�  So we can use the Fourier Transform (the sum of  
solutions over all ω) to describe the behavior of  a sensor 
over all ω.  Making earlier substitutions and simplifying  

�  Solving for the ratio of  output/input gives the Frequency 
Response Function 

 

-ω2Ao +2hω0jωAo + ω0
2Ao = ω2Ai

 

 

T(jω) = Ao/Ai  
 
          = ω2 / [ω0

2 – ω2
 + j2hω0ω] 



Frequency Response 
Function 

�  Where the Real part of  the Frequency Response Function 
describes Amplitude as a function of  frequency 

�  And the phase angle is  

 

|T(jω)| = |Ao/Ai| = |Ao|/|Ai| 
  
             = ω2 / {sqrt[ω0

2 – ω2]2 + 4h2w0
2w2}  

  

φ(ω) = arctan(Imaginary/Real) 
  
        = arctan(-2hω0ω / ω0

2-ω2) 
  



Frequency Response 
Function 

�  The plots of  amplitude and phase as a function of  
frequency are often called Bode plots 

 Natural frequency 

passband 

Phase is ~0 at frequencies in the passband.  
Phase varies rapidly near the natural period 



Non-Linear Systems 
�  When the output of  a system depends strongly on the input 

amplitude, superposition and scaling do not hold 

�  Examples of  nonlinear behavior include 

�  Seismometers with off-center masses 

�  Analog to digital convertors with a faulty resistor 

�  Others? 



Transfer Function 

�  Another way to solve the seismometer’s equation of  
motion is to solve its Laplace transform.  Recall that 

�  Substituting 

 

x(t) <=> X(s)   
x'(t) <=> sX(s)   
x''(t) <=> s2X(s) 
u''(t) <=> s2U(s) 
s = σ + jω   

x'' + 2hω0x'(t) + ω0
2x(t) = -u''(t) 

s2X(s) + 2hω0sX(s) + ω0
2X(s) = -s2U(s)  



Transfer Function 

�  Solving for the ratio of  output/input gives the Transfer 
Function 

 

�  Values of  s that make the numerator go to zero are 
“zeros”.  Where are they in this example? 

�  Values that make the denominator go to zero are “poles”.  
Factoring the denominator gives the value of  its two poles 

 

 

T(s) = X(s)/U(s)  
 
        = -s2 / [s2 + 2hω0s + ω0

2 ]

s2X(s) + 2hω0sX(s) + ω0
2X(s) = -s2U(s)  



Transfer Function 

�  Factoring the denominator using the quadratic equation, gives two poles  

If  the sensor is underdamped (h<1), the term under the sqrt will be imaginary. 

�  You can recreate the transfer function knowing just its poles and zeros. 

�  You can also recreate the transfer function if  you store the coefficients of  
the numerator (0, 0, -1) and denominator (ω0

2,  2hω0, 1) 

 

 

 

T(s) = -s2 / [s2 + 2hω0s + ω0
2 ]

        = -s2 / [(s – p1) (s – p2)]

p1 = -[h  - sqrt(h2 - 1)] ω0
p2 = -[h  + sqrt(h2 - 1)] ω0



Relationship between the Frequency 
Response and Transfer Functions 

�  Notice how similar the Transfer and Frequency Response 
Functions are.   

�  Recall that complex s = σ + jω.   

�  The Frequency Response Function is a special case of  the 
Transfer Function where σ = 0. 

�  In other words, the Frequency Response Function is the 
imaginary part of  the Transfer Function. 

T(s) = -s2 / [s2 + 2hω0s + ω0
2 ]

T(jω) = ω2 / [-ω2
 + j2hω0ω + ω0

2] 



Relationship between the Frequency 
Response and Transfer Functions 

�  The corner frequency of  a pole or zero can be found by taking 
its modulus (sqrt[Re2 + Im2]).  Remember that you may need to 
convert from radians into Hz! 

�  Each zero introduces a positive slope of  the amplitude response 
on a log-log plot by 6 dB/octave (or 20 dB/decade) at 
frequencies higher than its corner frequency 

�  Each pole introduces a negative slope of  the amplitude 
response on a log-log plot by 6 dB/octave (or 20 dB/decade) at 
frequencies higher than its corner frequency 

�  A pole and zero at the same corner frequency will cancel each 
other. 



Relationship between the Frequency 
Response and Transfer Functions 



A Note About the Time Domain 

�  Superposition and Scaling allow us to multiply the Amplitude 
spectra of  successive LTI response stages in the frequency domain.  
The time-domain equivalent of  this is convolution. 

�  There is also a time-domain representation of  the response called 
the Impulse Response Function.  It is the output signal that results 
from a dirac delta input signal. 

�  The Fourier Transform of  the Impulse Response Function is the 
Frequency Response Function. 

�  The Laplace Transform of  the Impulse Response Function is the 
Transfer Function. 

�  Manufacturers often “fit” poles and zeros to the Fourier Transform 
of  the impulse response rather than deriving them. 



SEED Sensor Stage 

Input units reflect what sensor measures 
(SI units) 

Pole-zero curve is normalized  
(=1 in passband). A0 must have same 
units as poles and zeros 

Poles and zeros can be listed in units of   
Radians (A – most common) or Hz (B). 
(1 radian = 2π Hz) 

The stage 1 Gain blockette lists the  
sensor sensitivity. 



Normalization 
�  You normalize the pole/zero curve so that you can multiply by 

the sensor gain and the resulting curve will equal the sensor 
gain in the passband. 

�  A0 is the factor you multiply the pole/zero curve by at the 
normalization frequency to get a value of  1. 

�  If  your sample rate is low enough that sensor normalization 
frequency is no longer in the passband, you may need to 
normalize at a lower frequency. 

�  If  the passband is not exactly flat and you need to move your 
normalization frequency, you may need to specify a sensor gain 
that differs a little from that reported by the manufacturer. 



Normalization 

Suppose the sensor gain is 
known at 1 Hz, but your 1 
sps LHZ channel has no 
amplitude there? 
 
1.  Find a lower frequency 

in the passband. 
2.  Find the sensor gain 

value at that frequency 
(plot only the sensor 
stage). 

3.  Find and enter A0 for 
the new frequency. 

4.  Change the sensor 
gain to the value in 
step 2. 

Desired move 



Displacement, Velocity and 
Acceleration 

�  For SEED, it’s preferred that the sensor’s response have a 
passband that is flat to the property being measured. A velocity 
transducer should have a “velocity response” – its passband is 
flat to velocity with input units of  Meters/second.  

�  It’s also possible to create an “acceleration response” for a 
velocity transducer.  Since T'(s) = sT(s), taking the derivative of  
a velocity response adds a zero at 0. 

�  Creating a “displacement response” from a velocity response is 
equivalent to removing a zero since integrating T(s) is 
equivalent to dividing by s. 



How Do These Differ? 



How Do These Differ? 



Amplifiers 

�  Many dataloggers have analog preamplifiers that boost 
signal prior to digitization.  Some stations use separate 
amplifiers. 

�  Amplifiers change only the amplitude of  the signal 
independently (we assume) of  frequency. 

�  In SEED, it is recommended that the amplifier have its 
own stage and include only a Gain description. 



More about Sensors 

Passive velocity seismometers 

�  have a simple mass-spring-damping system that requires no 
electricity for operation. 

�  have 2 zeros at 0 and 2 poles at the natural period related to the 
mass-spring system. 

�  sensitivity, poles, zeros and damping depend on their resistors, 
mass, period and mechanical damping as described here: 
http://ds.iris.edu/NRL/sensors/sercel/passive_responses.html 

�  If  the impedance contrast between sensor and amplifier is less 
than 2 orders of  magnitude, the amplifier will change the sensor 
damping and, therefore, its poles and zeros. 



More about Sensors 

Active velocity seismometers 

�  use feedback electronics to modify the natural period of  the mass-
spring system and to control the damping, therefore they require 
electricity for operation 

�  Have 2 zeros at 0, 2 poles at the natural frequency, plus additional 
poles and/or zeros at higher frequencies that describe the feedback 
electronics 

Feedback 
electronics 



Dataloggers 

�  may include an analog preamplifier that changes the gain of  the 
signal 

�  sample the input voltage, changing its gain and units and 
creating an initial sample rate 

�  decimate the sampled voltage using digital Finite Impulse 
Response (FIR) filters, which changes its sample rate and 
occasionally changes its gain. 

�  may include additional filters such as  

�  an analog anti-alias filter,  

�  Infinite Impulse Response (IIR) filters 



Dataloggers 

Analog to Digital 
Conversion  

�  A simple analog to 
digital converter 
(ADC) samples by 
comparing an input 
voltage at regular 
time intervals to 
reference voltages 
to determine its size 

•  The states for comparators L1, L2 and L3 are initially 
(0,0,0).   

•  Each comparator whose voltage is exceeded by Vin 
gets set to 1.   

•  A voltage with comparator states (1,1,0) has 2 counts. 

From Havskov and Alguacil, 2004 



Dataloggers 
Analog to Digital Conversion 

�  The input sample rate is determined 
by the ADC 

�  The ADC scale factor in Counts/Volt 
depends on the ADC size (the 
number of  comparisons it can make 
= the number of  counts it can 
recognize) and the the voltage range 
allowed.  So a true 24-bit ADC 
sampling a voltage range of  40 Vpp 
has scale factor  

  

ADC scale factor = 224 Counts / 40 Volts  
                            = 4.194 x 105 Counts/Volt  
                            = 1 / Least Significant Bit (LSB) 

Voltage Range Equivalents 
•  40 Volts peak-to-peak (Vpp) 
•  20 Volts peak (Vp) 
•  +/-20 Volts Full Scale Voltage 



SEED ADC Stage 

Analog to Digital Conversion 

Digital stage 

Units change 

One coefficient (unity) 

Input sample rate 

This is not a FIR stage, 
so FIR delays are zero 

ADC scale factor &  
normalization frequency 



Dataloggers 

FIR Filtering - Oversampling and Decimation 

�  Older dataloggers relied on an analog anti-alias low-pass 
filter to prevent aliasing during sampling.   

�  Modern dataloggers oversample and decimate data using 
digital Finite Impulse Response (FIR) filters.  FIR filtering 
extends the passband up to 70-90% of  the Nyquist 
frequency. 

�  Oversampling and FIR Decimation also mitigates 
quantization noise. 



Dataloggers 

FIR Filters 

�  are digital filters typically 
represented in the time 
domain using coefficients. 

�  are weighted averages – they decimate by averaging the amplitudes 
of  surrounding input samples to obtain output samples (stable). 

�  must average future samples, so there is a delay caused by waiting 
for these future samples to arrive.  Dataloggers correct time tags 
for this delay. 

�  must be normalized (the coefficients must sum to 1) or else they 
will change the gain of  each sample. 

FIR delay 

New Sample 



Dataloggers 

Because FIR Filters average amplitudes over neighboring 
samples, they mitigate quantization error. 

Input Signal Output Signal 

From Scherbaum (1996) 



Dataloggers 

FIR filters are  

�  zero phase (they don’t alter phase),  
�  low-pass filters with  
�  unity gain (they don’t alter amplitude).   

Their decimation factor reflects how frequently they are applied to the input 
time series. 

FT 
<==> 



SEED FIR Stages 

Digital stage, units of  Counts 

Normalized coefficients 

Input sample rate & decimation factor 

FIR delay (positive)  
     = (#coeffs - 1) / (2 * Input sample rate) 
for symmetric (acausal or zero-phase) filters 

Unity gain at the normalization frequency 



Dataloggers 
Analog Anti-Alias Filters 

�  Some dataloggers have an analog anti-alias filter between the 
preamp and the ADC.  It is described using poles an zeros.  The 
following example is from the Nanometrics Taurus. 

Input and Output units are Volts 

Gain need not be unity 



Dataloggers 
Infinite Impulse Response (IIR) filters 

�  Some dataloggers have an optional Infinite Impulse Response 
(IIR) filter available.   

�  IIR filters are computationally fast compared to FIR filters – 
they depend on fewer samples 

�  A value calculated by an IIR filter includes previous output 
samples to which the IIR filter has already been applied one or 
more times.  Because of  this, they can be notoriously unstable. 

�  IIR filters are not linear phase – they alter the phase of  the input 
signal 



Dataloggers 
Infinite Impulse Response (IIR) filters 

�  IIR filters are great for real-time phase picking – they 
introduce little delay and can produce minimum-phase 
arrivals for easier picking. 

�  Data filtered by IIR filters is appropriate for in-house 
analysis, but should not be archived as the main data 
stream. 

�  In SEED, IIR filters should be represented as a digital 
pole-zero response stage because this introduces less 
round off  error than a coefficient representation. 



Single vs. Differential  
Input & Output 

�  Sensors may be made with  

�  one signal output wire plus ground (single-ended) or  

�  two signal output wires plus ground (double-ended).   

�  Double-ended output is called “Differential output” 
because the signal on the second output is inverted so that 
the two signals can be differenced at the datalogger.  This 
cancels noise induced in the cable leading from sensor to 
datalogger. 



Differential Output 

•  The “output +” is the 
original sensor signal. 

•  “output –” is the inverted 
signal from the second 
sensor output. 

•  Trace 3 is the difference of  
the two output traces 

If  the noise (right) were to be induced in 
the sensor cable, it should be similar on 
both output wires.  Taking the difference 
of  the output traces subtracts out the 
noise, but adds the signal. 

From Havskov and Alguacil, 2004 



Single vs. Differential  
Input & Output 

�  Dataloggers may be made with either 
single-ended or differential input. 

�  Sensors with differential output may 
specify their sensitivities either in the 
form of  “2 * 750 V/m/s” or “1500 
V/m/s differential; 750 V/m/s 
single-ended”. 

�  Connecting a differential output sensor to a single-ended input 
datalogger decreases the amplitude by a half. 

From Havskov and Alguacil, 2004 

Sensor 



Nominal Response Library 
(NRL) 

What is the NRL? 

�  Library of  manufacturers’ recommended nominal 
instrument responses 

�  SEED RESP files 

�  Help matching an instrument’s configuration with the 
correct response 

�  Notes describing instrument and response differences 

 



Nominal Response Library 
(NRL) 

How is the NRL constructed? 

�  Response information retrieved from manufacturer 

�  Instruction file links instrument configuration with pole/
zero or FIR coefficient files 

�  Generate RESP files from instruction file 

�  Accuracy checking 



When Do I Need a  
Custom Response? 

�  Update your Nominal Response if: 

�  you have calibration info  

�  your accelerometer full scale voltage and/or clip level 
differs  

�  you have a passive sensor and 

�  your resistors differ 

�  you need to take sensor-amplifier impedance into account 

�  You’ve set a software gain on your datalogger 



A Few Tools for Retrieving 
Response Information 

�  Nominal Response Library  

�  http://ds.iris.edu/NRL/ 

�  Manufacturers’ recommended 
responses 

�  RESP format  
 (http://ds.iris.edu/ds/nodes/dmc/data/formats/resp/) 



A Few Tools for Retrieving 
Response Information 

�  Metadata Aggregator 

�  http://ds.iris.edu/mda/ 

�  Response information for data archived at IRIS 

�  Formats 

�  RESP (http://ds.iris.edu/ds/nodes/dmc/data/formats/resp/) 

�  SAC PoleZero 

�  Displacement response in nm 
�  Poles and zeros in radians 
�  CONSTANT = total sensitivity * A0 

�  FDSN StationXML (http://www.fdsn.org/xml/station/) 



A Few Tools for Retrieving 
Response Information 

�  IRIS Web Services 

�  http://service.iris.edu/ 

�  Response information for data archived at IRIS 

�  Formats 

�  station service (text & FDSN stationXML) 

�  resp service (RESP) 

�  sacpz service (SAC pole zero format) 



A Few Tools for Retrieving 
Response Information 

�  breq_fast 

�  http://ds.iris.edu/SeismiQuery/breq_fast.phtml 

�  Response information for data archived at IRIS 

�  Formats  

�  RESP 
�  Dataless SEED  

(http://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf) 
�  Full SEED 

(http://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf) 

 



A Few Tools for Writing 
SEED Metadata 

�  Antelope  
�  http://www.brtt.com/software.html 

�  Native response format: CSS  
(see Antelope man page for “response”) 
 

�  Portable Data Collection Center (PDCC) 
�  http://ds.iris.edu/ds/nodes/dmc/software/downloads/ 

�  Native response format: RESP from the NRL 

�  Station Information System (SIS) 

�  USGS regional network partners 

�  Native response format: RESP from the NRL, stationXML 



Response Correction 
�  An instrument response can be removed from data by 

�  Deconvolution in the time domain 

�  Division of  amplitude spectra in the frequency domain 

. = 

ideally… Data spectrum 1/Amplitude response 



Response Correction 
�  But suppose your data has extra noise at long period 

�  Limiting the frequency band with a bandpass filter can 
help 

�  Spectral prewhitening can sometimes help by evening out 
the spectrum 

. = 

in reality… Data spectrum 1/Amplitude response 



A Few Tools for  
Response Correcting Data 
� IRIS timeseries web service  

http://service.iris.edu/irisws/timeseries/1/ 

�  SAC  
�  Software request 

http://ds.iris.edu/ds/nodes/dmc/forms/sac/ 

�  Examples 
http://www.eas.slu.edu/eqc/eqc_cps/TUTORIAL/RESPONSE/index.html 
http://geophysics.eas.gatech.edu/people/jwalter/sacresponse.html 
 

�  Matlab Example 
http://www.mathworks.com/matlabcentral/fileexchange/48966-
rawseismicinstrumentcorrection/content/RawSeismicInstrumentCorrection.m 

 



Tools for Verifying 
Responses 

�  evalresp (http://ds.iris.edu/ds/nodes/dmc/software/downloads/) 

�  Command line C program 

�  Reads SEED RESP files 

�  Sanity checking for basic sensitivity 

�  Summarizes output sample rate & units 

�  Creates ASCII files containing amplitude and phase 
spectra. 



Verifying Responses with 
evalresp 

�  To verify responses in a new dataless SEED file 

�  Create RESP files using the rdseed program  
(http://ds.iris.edu/ds/nodes/dmc/software/downloads/) 

�  Run evalresp on each RESP file, directing the output to a 
file 

�  For that output file, egrep -i "(FAIL|ERROR)" output_file 



Tools for Verifying 
Responses 

�  Also, verify the response curve graphically 

�  JPlotResp (http://ds.iris.edu/ds/nodes/dmc/software/downloads/) 

�  Reads RESP files 

�  Runs evalresp 

�  Bode plots (stages plotted as composite or separately) 

�  Mouse-over discovery of  curve values 

�  Metadata Aggregator 

�  Bode plots 



Verifying Responses 

�  Do the high- and low-
frequency corners look 
correct? 

�  Does this look like a velocity 
response? 

�  Is the normalization 
frequency within the 
passband? 

�  Is the plotted Nyquist 
frequency consistent with 
sample rates in the dataless 
and miniSEED? 

Metadata Aggregator 

STS-2 Sensor 



Finding A0 with JPlotResp 

�  Create a copy of  your RESP file 
and set A0 and the sensor 
sensitivity to 1. 

�  Use JPlotResp to plot just stage 1 
of  your edited RESP. 

�  Use “mouseover” to find the 
amplitude of  your pole-zero curve 
at your normalization frequency 
(SensFreq).  A0 is the inverse of  
this. 

�  Restore the sensor sensitivity in 
your RESP and include your new 
A0. 

�  Replot the sensor stage to make 
sure the amplitude is now the 
sensor sensitivity. 



Tools for Verifying 
Responses 

�  MUSTANG data quality metrics 

�  http://service.iris.edu/mustang/ 

�  The following metrics operate on response-corrected data.  
Unexpected results may indicate incorrect response 
information 
�  noise-psd 

�  noise-pdf  

�  noise-mode-timeseries 

�  measurements 
�  dead_channel_exp 
�  pct_below_nlnm 
�  pct_above_nhnm 
�  transfer_function 



Pole Typo 

HHE poles: 

HHN poles: 

Sign error 



Incorrect FIR Cascade 

The data sample rate was 
100 sps, but the FIR 
cascade was for a 1 sps 
stream.   
FIR responses have lobes at 
f>Nyquist.  Since there no 
energy in 1 Hz data at those 
frequencies, you don’t see 
the lobes when you 
instrument correct… 

…unless you remove this 
response from higher 
sample rate data that does 
have energy there!   



Incorrect Sensor Response 

This MUSTANG query retrieved values 
of  pct_above_nhnm measurements 
having 20% or more energy above the 
New High Noise Model for the CM 
network. 

The sensor response archived was a 
placeholder until the needed 
instrument can be added to the NRL. 
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Contacting Me 

met@iris.washington.edu 


