T-299, IRIS/PASSCAL Autonomous Seismic Stations

Paul Carpenter 10-25-2015

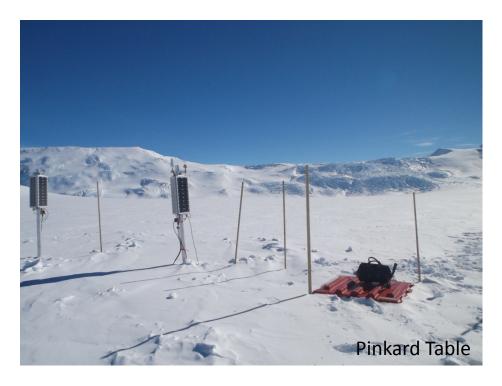
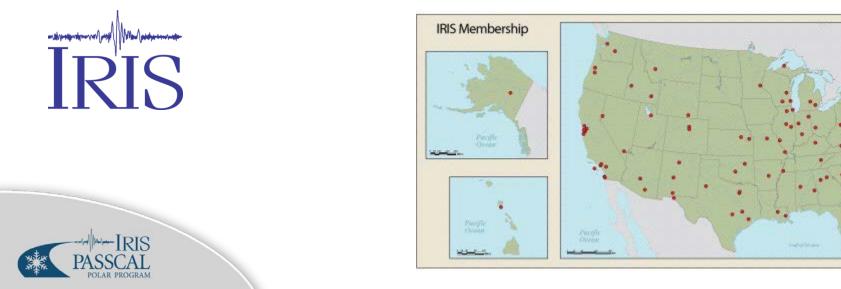
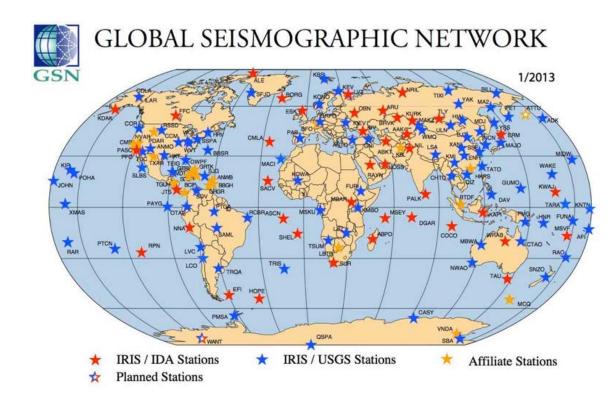

IRIS

Photo: Bear Peninsula

Overview


- IRIS overview
- PASSCAL overview
- PASSCAL Polar Program overview (T-299)
- PASSCAL equipment
- A typical day in the field

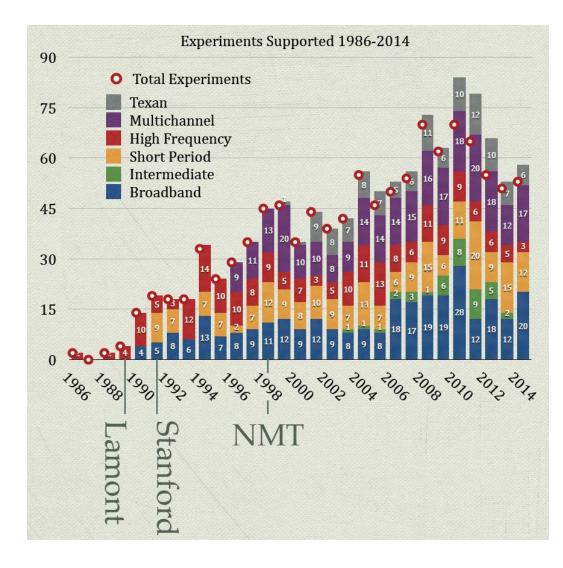

IRIS

- Facilitate and conduct geophysical investigations of seismic sources and Earth properties using seismic and other geophysical methods.
- Promote exchange of geophysical data and knowledge, through use of standards for network operations, data formats, and exchange protocols, and through pursuing policies of free and unrestricted data access.
- Foster cooperation among IRIS members, affiliates, and other organizations in order to advance geophysical research and convey benefits from geophysical progress to all of humanity.

IRIS

- Portable Array Seismic Studies of the Continental Lithosphere (PASSCAL)
- Data Services
- Education and Public Outreach (EPO)
- Global Seismographic Network (GSN)
- The Ocean Bottom Seismograph
- Instrument Pool (OBSIP)
- USArray

PASSCAL


Portable Array Seismic Studies of the Continental Lithosphere

- Facility provides instrumentation to NSF, DOE or otherwise funded seismological experiments around the world
- Services include, but are not limited to:
 - Seismic instrumentation
 - Equipment maintenance
 - Software
 - Data archiving
 - Training
 - Logistics and shipping
 - Engineering support
 - Field Support



PASSCAL Mission

The mission of IRIS PASSCAL is to advance scientific discovery by providing solutions that enable earth scientists to collect high quality seismic data with flexible arrays.

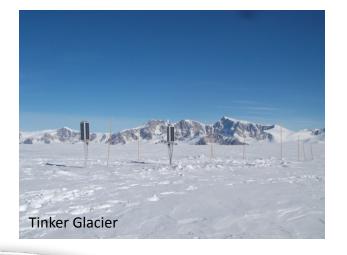
PASSCAL

Facility

Photo Courtesy of George Slad

Facility

- ~35 Full Time Employees
 - Polar, Sensors, Hardware, Software, Data, Admin
- Large warehouse for equipment onsite storage
- Lab space for repairing & testing of seismic instrumentation
- Workspace for development of seismic equipment & software



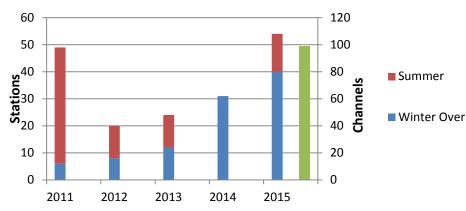
T-299, POLAR Group

- Technical Group provides specific technical support to other events as needed
- Six, full time, employees
 - Two mechanical engineers, two electrical engineers, one systems engineer, one integration & testing seismologist
 - Rest of facility offers additional support and expertise including equipment testing & repair, shipping & logistics.
- Team spends ~16 months in the field each year, actual work hours spent is much higher ~34 months
- Heavy focus on engineering and development due to harsh nature of polar environments

Blood Falls

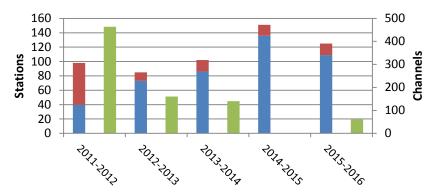
Polar Group Facilities in Socorro

Equipment & Lab Space

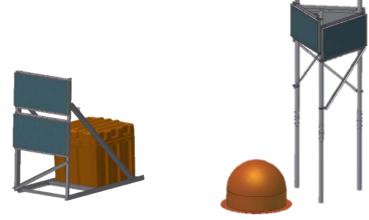

- Lab space for cold testing
 - Iridium & GPS antennas
 - Solar
 - FW and cold bench testing
 - R&D
- 2 Large cold chambers (32 ft³ & 27 ft³)
- 2 Smaller cold chambers (~2 ft³, ~4 ft³)
- 2 laboratory chest freezers (8.1 ft³ & 10.6 ft³)
 - Long term cold testing
- Polar Lab
 - Iridium & GPS antennas
 - Solar
 - FW and basic bench testing
 - R&D, Prototyping

Polar Seismic Demand

Arctic Seismic Stations & Channels



Antarctic Seismic Stations & Channels


Equipment Support Process

- Researchers submit an equipment request & contact PASSCAL
- Iron out the details
- A letter of support is issued
- Project is funded
- Engineering and development support is offered as needed
- Equipment is prepared
- Equipment is shipped
- Trainings customized to the project are offered (typically in Socorro)
- Experiment begins
- PASSCAL staff assist with the deployment of the equipment as needed
- Data is gathered, PASSCAL assists with questions, problems and archiving of the data
- Equipment returned to PASSCAL
- Equipment is tested, repaired and put in to the warehouse
- Process starts over and equipment is redeployed!

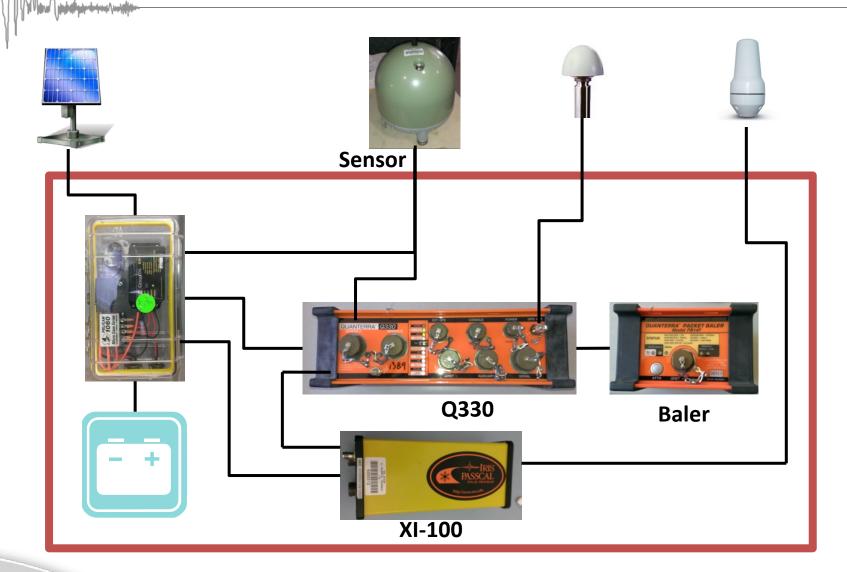
Station Examples

Long Term Extreme Cold Station

- AGM (or LiFePO⁴) Batteries
- Heavily insulated enclosure
- Broadband Surface
 Seismometer in insulated vault
- Total weight ~1000 lbs
- 5-10 year battery life

2 year, Moderate Cold Station

- Lithium Primary batteries +1 small AGM
- Moderately insulated enclosure
- Direct bury broadband posthole seismometer
- Total weight ~250 lbs
- 2-3 year battery life



Station

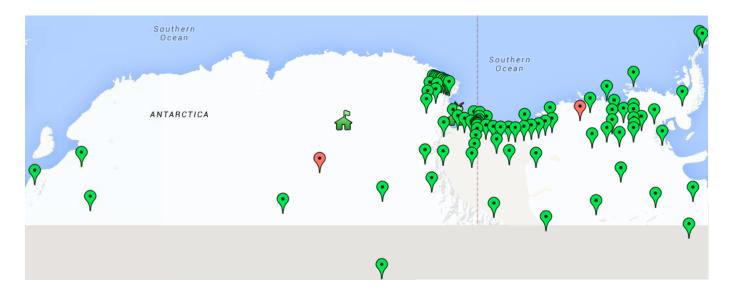
- 1 small AGM battery
- Lightly insulated enclosure
- Typically passive sensor
- **Summer Only** Total weight ~75 lbs
 - 1-2 week battery life

What is in a Seismic Station?



miliner Marine Marine

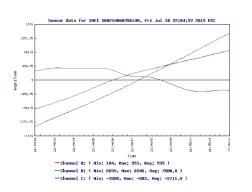
Power Storage



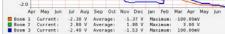
	LiFePO ₄ Secondary	AGM Secondary	Li-SOCl ₂ Primary	Air Alkaline Primary
Gravimetric Energy Density	37 Wh/lbs	21 Wh/lbs	311 Wh/lbs	200 Wh/lbs
Volumetric Energy Density	1.94 Wh/in ³	1.73 Wh/in ³	16.4 Wh/in ³	11.5 Wh/in ³
Cost	1.13 \$/Wh	0.168 \$/Wh	0.27 \$/Wh	0.11 \$/Wh
Туре	Rechargeable	Rechargeable	Not rechargeable	Not rechargeable
Cold de-rate	Low	~50%	Low	High to Medium
Notes	 Very large number of charge cycles Haz Cargo 		Haz cargoLong lead time	 DC–DC Converter Very temperature sensitive

hvaqlumertratyfhiqa

Current Polar Stations with Telemetry



133 Telemetered Stations XI-202 – 68 XI-100 – 65 (13 with RUDICS)

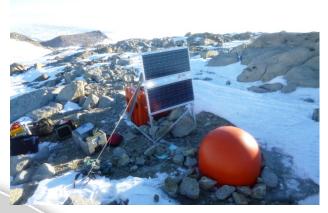

Station SOH User Interface

- The Iridium Web Console
- Effective and easy way for users to review station health.
- Graphs of many core SOH metrics
- Graphs on station over view can be click on to view longer durations
- Tables with color coded values
- Data snips, 10s of 1 SPS seismic data
- Mineable database for 100s of other metrics

RS02: Voltages

Website and content is copyright(c) 2007 by IRIS/PASSCAL. If you have any comments or questions, please contact us at webmaster@passcal.nmt.edu

A typical day in the field - Pack up the equipment and travel to the station



A typical day in the field - Assess the site

Pray for low accumulation and no wind!

with we with high

A typical day in the field – Dig!

hvaplumertet (hept

A typical day in the field – More digging!!

milimental

A typical day in the field – Install or check the seismometer

Must be level, oriented to True North and placed on a stable base

A typical day in the field – Install or check the electronics

million normalisti

Install or service the enclosure with batteries and data recording equipment. Recover data and document station status.

A typical day in the field – Install or check solar and antennas

Install or inspect the solar panels, GPS and Iridium antennas

A typical day in the field – Checks, Notes and Photos

III/March patrick and some the second second

RIS

hviple verver helde

Double check everything is working!

A typical day in the field – Pack up & head back

hvuplumertrety/hereisle