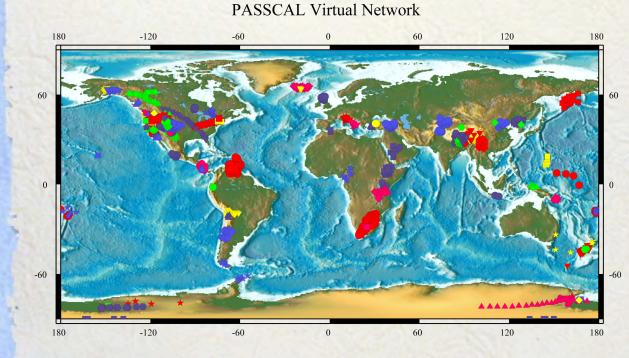


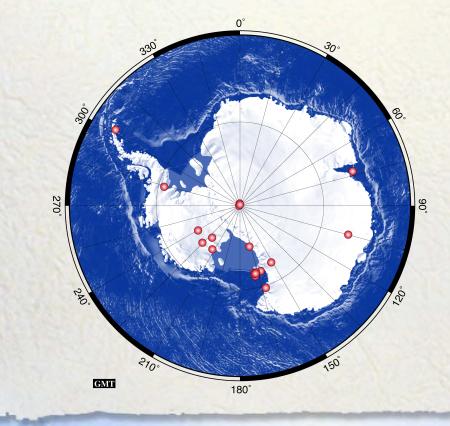
Seismic Instrumentation Temporary Stations: A PASSCAL Perspective


Bruce Beaudoin, Tim Parker, Jim Fowler & Kent Anderson

POLENET: Seismology in the IPY San Francisco, Dec. 10, 2006

NEW MEXICO TECH

PASSCAL Support


- Average >60 experiments per year
- 5-10% are polar

- Logistics & planning
- Training
- Instrumentation
- Software
- Field support
- Data archiving
- Troubleshooting
- Shipping

PASSCAL Polar Support

- Over 25 polar experiments since 1989
- Passive, active, glaciological, climate

- Cold culling of equipment prior to shipment
- Design and fabrication of 'oneof' specialty equipment
- •Acquisition of specialty equipment (e.g cold chamber, snow streamer, solid state disks)

Equipment for Active Experiments

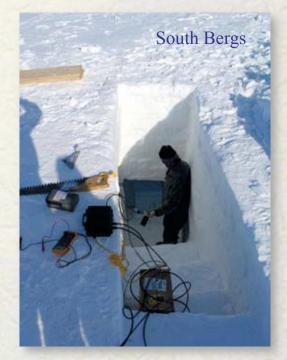
Single & 3-channel dataloggers and geophones

Andrill

ONSET

60 - channel snow streamer 80' takeouts, 7 12-takeout cables, Geode adapters.

Elements of a Temporary Broadband Station


- Datalogger w/ on-site storage device
- Seismometer
- Battery and solar power
- Power distribution system
- Station and seismometer enclosures

Instrumentation Operating Specifications

- Q330: Fully spec'd to -40°C
- RT130: -20°C
- Baler: -40C (not media)
- Baler Disk Drive: -20°C
- Flash Media: -55°C
- STS-2 0°C
- 3T: -10°C, cabling -20°C, power controller -20°C

Communication Options

- Wilan 8 Mbits/sec
- Freewave 153 Kbit/sec
- Iridium 2.4 Kbit/sec *
- Argos SOH only

Power Consumption

Batteries at the Truncated Cones seismic station. (Photograph Courtesy of Jessie Crain - 2001)

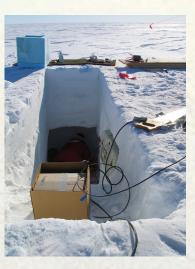
	Watt	17.17
RT130	1.5	11.1
Q330	0.6	
STS-2	0.55	
3T	1	122
Wilan	4	11000
Freewave	1.4	22.2
Iridium	4	1

Power Budget for a PASSCAL Style Station

Q330 (3-ch 40sps) 0.6W 3T 1.0W Balance of system* 0.4W Total 1 Day \approx 50 W-h 1 Month \approx 1500 W-h 0.5 Year \approx 9000 W-h

* Includes Iridium SOH

Realtime Date Rates

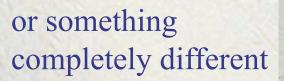

	Rate
40 sps	180 byte/s
40 sps w/OH	~360 byte/s
100 sps	450 byte/s
Iridium	300 byte/s
Freewave	153 Kb/s
Wilan	1 MB/s

The radio repeater tower at Truncated Cones. (Photograph Courtesy of Rich Esser - 2002)

Examples of Enclosures

South Bergs

Seismic vault and instrument electronics box at the lower Erebus hut seismic site. (Photograph Courtesy of Rich Esser - 2002)



TAMSEIS

Examples of Solar Mounts

Pole Mounted

Photo Courtesy of Jerry Bowling

Mostly effective, but time consuming constructions

New Directions

- IRIS/UNAVCO MRI
- Collaborations with manufacturers for polar specific development.
- Appointment of Tim Parker as Polar Projects Manager at PASSCAL

IRIS/UNAVCO MRI

- NSF Office of Polar Programs
- "Collaborative Research: Development of a Power and Communication System for Remote Autonomous GPS and Seismic Stations in Antarctica"

IRIS/UNAVCO MRI

- Establish test beds at McMurdo & South Pole stations
- Prototype specialized cold station enclosures
- Test primary battery systems
- Test cold rated broadband sensor
- Test Trillium 240
- Field new digitizer firmware tuned for cold

MRI Enclosures

- R-50 vacuum panel station box
- R-5 blue-foam surrounding box
- Sensor at ambient sitting on phenolic base

MRI Power System

- Lithium primary battery pack for winter operations
 - 190 A-h/unit between 18.5-15.5V
 - Testing both 4 and 10 unit packs
 - 10 unit pack
 - 30,000 W-h at room temperature
 - 23,000 W-h at -30°C
 - 16,500 W-h at -55°C

190 A-h unit prior to shrink wrap

MRI Power System

- AGM secondary batteries
- 'Quick' deploy solar mounts
- Univ. of Alaska power board (-40°C rated and field tested)
- Polar 'simplified' power-box design

MRI Cold Rated Broadband Sensor Test

- Leveraging development initiated by GSN for a -55°C rated borehole seismometer
- Cold chamber testing of a surface version this season
- Installation at South Pole next season

MRI Datalogger Firmware

- Quanterra has tuned their firmware to allow the datalogger to remain operating to -60°C
- Flash drive affords on-site storage operating to -55°C

MRI More Information

S41A-1314 Bipolar Seismology I Posters
Thursday 0800 MCW Level 2
Development of a Power and Communications System for Remote Autonomous Polar Observations

B Johns, *K R Anderson, B C Beaudoin, J Fowler, T Parker, S White

Related Efforts

- Contracted development of an Iridium controller
 - Phase 1: allows for SOH transmission, command and control, and limited data retrieval
 - Phase 2: Transmission of event data
- Continued exploration of alternative energy sources

Future Efforts

Pursuing a cold sensor pool
Investigating the establishment of a manned-asneeded McMurdo instrument center and storage facility